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Summary

Extensive slow-crack-growth (SCG) analysis was made u_ing a primary, exponential crack-velocity

formulation under three widel _ used load configurations: constant stress rate, constant stress, and cyclic

stress. Although the use of thc exponential formulation in determining SCG parameters of a material

requires somewhat inconveni_ nt numerical procedures, the resulting solutions presented gave almost

the same degree of simplicity in both data analysis and experiments as did the power-law formulation.
However, the fact that the ineLt strength of a material should be known in advance to determine the

corresponding SCG parameters was a major drawback of the exponential formulation as compared with

the power-law formulation.

Introduction

Advanced ceramics are c_,ndidate materials for structural applications in advanced heat engines and

heat recovery systems. The major limitation of these materials in hostile environments, particularly at

elevated temperatures, is slo_-crack-growth (SCG)-associated failure, where slow crack growth of
inherent defects or flaws can q_ccur until a critical size for catastrophic failure is reached. To ensure

accurate life prediction of ceramic components, it is important to accurately evaluate the SCG parameters

of a material with specified loading and environmental conditions.

Life prediction (or SCG) parameters of a material depend on what type of crack-velocity formulation

is used to determine them. Th,,_ power-law crack-velocity formulation has been used for several decades

to describe SCG behavior of z_variety of brittle materials ranging from glass and glass ceramics to

advanced structural ceramics. The main advantage of the power-law formulation over other crack-

velocity formulations lies in the simplicity in its mathematical expression for lifetime analysis. It has

also been observed that the power-law formulation has described adequately the SCG behavior of many
brittle materials. Because of these merits, the power-law formulation has been used in two recent ASTM

test standards (refs. I and 2) to determine SCG parameters of advanced ceramics in constant stress rate

testing at both ambient and elevated temperatures. Alternative crack-velocity formulations take exponen-
tial forms to account for the hfluence of other phenomena (such as a corrosion reaction, diffusion control,

thermal activation, etc.). Hovv_-ver, these exponential forms generally do not result in simple mathematical

expressions of life prediction "ormulation. although the forms might better represent the actual SCG
behavior of some materials. Because of this mathematical inconvenience, the exponential crack-velocity

formulation has rarely been u,.ed for brittle materials as a means of life prediction methodology in testing

or analysis.
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In thisreport,theexponentialcrack-velocityformulationwasanalyzedto achieveamoreconvenient
andsimplifiedlife predictionanalysiscomparedwiththepreviousexponentialcrack-velocity-based
analyses.Thenumericalanalysispresentedherewasmadeforthreewidelyutilizedloadconfigurations:
constantstressrate(dynamicfatigue),constantstress(staticfatigueorstressrupture),andcyclicstress
(cyclicfatigue).Theresultinganalysisobtainedwith theexponentialformulationwascomparedwiththat
of thepower-lawformulationtoassesswhichwouldyieldabetterlifepredictionmethodologyin terms
of accuracyandconveniencein testingandanalysis.To theauthors'bestknowledge,noanalyticalstudy
onslowcrackgrowthhasbeendonepreviouslyusingtheexponentialformulationundercyclicloading.
In thefollowingreports(parts2and3of thisseries)themeritsandlimitationsof theexponentialformula-
tionwill befurtherdescribedin detailusingavarietyof SCGdatadeterminedfor manyglassesand
advancedceramicsatbothambientandelevatedtemperatures.

All symbolsusedin thisreportarelistedin theappendix.
ThisworkwassponsoredinpartbytheHOT/PCandtheZCETprojectsattheNASAGlennResearch

Center,Cleveland,Ohio.

Theoretical Background

Power-Law Formulation

The widely utilized empirical power-law crack-velocity term for above the fatigue limit is expressed
in the form (ref. 3)

da t" K _n

d t KIc
(1)

where

o

t

KI

A,n

crack velocity
crack size

time

mode I stress intensity factor

mode I critical stress intensity factor (or fracture toughness)

material- and environment-dependent SCG parameters

Typically, SCG testing to determine related SCG parameters is performed by applying constant stress

rate, constant stress, or cyclic stress loading to ground-test specimens. Constant stress rate testing deter-

mines strength as a function of applied stress rate, whereas constant stress and cyclic stress testing mea-

sure time to failure as a function of applied stress. The strength in constant stress rate and the time to

failure in constant stress and cyclic stress tests can be analytically derived to give the following relations
(refs. 4 and 5):

(If = Od(Y l/(n+l) (2)

t fs = Ds_ -n (3)
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--I1

tfi. = D c_ max (4)

where _f is the fracture stre_,._ corresponding to the applied stress rate _ in constant stress rate testing,

tf_. is the time to failure subjected to a constant applied stress c; in constant stress testing, and tf, is the
time to failure subjected to c3 :lic loading with a maximum stress (Ymax in cyclic stress testing. The pa-

rameters represented by D's are expressed as follows (refs. 4 and 5):

'"''+l' (5)

Ds = BS: 7-2 (6)

(gs:'-2) (v}

where B = 2KIc/[Ay2(n - 2)] where Y is the crack geometry factor in the relation K 1 = Y(Y al/2; S i is the

inert strength at which no slow crack growth occurs; the function fit) is a periodic function in cyclic

loading specified in _(t) = 6n,axf(t) in a range of 0 <fit) < 1; and "_is the period. The SCG parameters i1
and D (and B or A) can be obtained by a linear regression analysis with experimental data in conjunc-

tion with the corresponding equation, either (2), (3), or (4), depending on the type of loading. Hence, it is

straightforward to determine SCG parameters n and D by least-squares fitting of the data, which is the
most advantageous feature of the power-law crack-velocity formulation. This convenience and merit in

mathematical simplicity in addition to the use of routine test techniques have led for several decades to

the almost exclusive use of the power-law crack-velocity formulation in life prediction analysis and test-

ing for many brittle materials over a wide range of temperatures.

Exponential Formulation

Fracture-mechanics-based modeling typically offers a framework in which lifing can be made.

However, long-term life prediction is sensitive to the relation between the slow crack velocity and the

stress intensity factor, which depends on many factors itself. As a result, several different exponential

crack-velocity formulations that have been previously proposed are based on these other factors, which

include the presence of a chelnically assisted corrosion reaction (ref. 6), diffusion-controlled stress

rupture (ref. 7), a thermally activated process (ref. 8), a chemical reaction with constant crack-tip

configuration (ref. 9), kinetic crack growth Iref. 10), and others (ref. 11). The generalized exponential

crack-velocity forms thus proposed are

v= Aexpfn( KI ]]

L _KIc IJ

(8)

v=A( KI ]exp[n( KI ]1

K,c ) L K,c )]
(9)
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v=A( KIC]exp[n( KI ]] (1o)

(11)

_K1c ) [ _ K1C ) ]
(12)

where A and 11 are SCG parameters and are different from those used in the power-law formulation.

Unlike the power-law crack-velocity formulation, the exponential crack-velocity forms do not yield

simple, analytical expressions of either the resulting strength as a function of applied stress rate in con-

stant stress rate testing or of the resulting time to failure as a function of applied stress in constant stress

testing or maximum applied stress ill cyclic stress testing. Several attempts have been made under both

constant stress rate and constant stress loading to obtain corresponding lifetime expressions through nu-

merical integration incorporating linear (refs. 12 and 13) or nonlinear (ref. 14) regression analysis.

However, this approach still involves complexity in regression technique as compared with the simple

least-squares approach in the power-law formulation.

Slow-crack-growth analyses of three load configurations of constant stress rate, constant stress, and
cyclic stress were made in this section to obtain simpler, representative equations through numerical

solution, which in turn makes the use of regression analysis easier to determine corresponding SCG

parameters comparable to the case of the power-law formulation. Trantina (ref. 12) used the exponential

crack-velocity forms (eqs. (8) to (10)) to determine the approximate time-to-failure equations under con-

stant stress rate and constant stress loading and showed that the coefficients of the exponential equations

(8) to (10) were insignificant except at very low fracture stress. Ritter et al. (ref. 13) used the exponential
form (eq. (8)) to determine the relation of strength versus stress rate in constant stress rate loading via a

numerical method for indentation cracks that possess a residual stress field around the indent. For the pur-

pose of simplicity and generalization, equation (8) was chosen for the present analysis. This equation was

taken from Wiederhorn and Bolz (ref. 9), who modified the original Hillig and Charles (ref. 6) exponen-

tial formulation. An additional analysis using other crack-velocity forms (eqs. (9) to ( 11)) was also made

and the results will be discussed in the section Other Exponential Formulations.

To minimize the number of parameters to be specified (such as A, a, o, S i, KIC, and t), it is con-
venient to use a normalized scheme, as used previously for the power-law velocity formulation (refs. 15
to 17):

K* KI T* A C* a * 0 . . = o_o._. • _ _max
=--;KIc =--t;ai =--;ai (3 =--;Si o T* , (Ymax ---Si (13)

where

K* stress intensity factor (SIF)
T* time

C* crack size
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appliedstress
•* appliedstressratea

max* maximum applied stress

in cyclic loading, and a i is the critical crack size in the inert condition or is the initial crack size. Using
these variables, the exponential crack-velocity equation (8) can be normalized as follows:

dC g ..ilk _¸

-e (14)
dT*

The corresponding normalize, t SIF h"_ is expressed in load configurations of constant stress rate. con-

stant stress, and cyclic sinuso,dal stress, respectively, as

x"= (15/

K"=

/_': = {1+9_ + -_2 R sin[(-_J-)7-* ]}Gmax (C*)'/2 (17)

where R is the stress (or load) ratio, defined as R = (Yrnin/(Ymax, in which Omin and (Yma_x are the mini-
mum and maximum applied stresses, respectively, applied in cyclic loading; and o9 is the angular
velocity• As typical for ceran_ics, the crack size at instability in either an inert or fatigue environment

was assumed to be small compared with the body of the specimens or components (i.e., an infinite-body

assumption). Differential equation (14) was solved numerically using a fourth-order Runge-Kutta method
for each respective loading c(,nfiguration. The initial condition was C* = 1.0 at T* = 0, and the instability

conditions were K* = 1.0 and dK*/dC" > 0. In cyclic loading, the frequency was taken as arbitrary values

of oIai/A > 10 8, depending ol_ the values of maximum applied stress and n. The effect of frequency on
the solution is discussed in th: section Cyclic Stress Loading.

Results of Numerical Analysis

Constant Stress Rate Loading

The results of the numeri :al solution of normalized fracture stress (strength) (Yf as a function of
normalized stress rate _* at: shown in figure 1 for values of n ranging from 5 to 100. As seen in the

figure, for a given n, strength decreases with decreasing stress rate and represents the susceptibility to

slow crack growth• The rate ()l•decrease in strength with decreasing stress rate becomes more significant

with lower n values, analogous to the case for the power-law formulation, indicating that the lower n

gives rise to the greater SCG susceptibility and vice versa. The strength approaches its corresponding

inert strength as stress rate increases to a certain value at which no slow crack growth occurs. Likewise,

the strength converges close _c)zero as the stress rate approaches In d* = 0. A linear relationship between

I_f and In holds for m:)st of n values within the rang(; of (Yf = 0.2 tO 0.9 with correlation
coefficients of r2 > 0•9975•

NASA/TM--2002-211153/PM,:I" 1 5
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rate _r* in constant stress rate loading for different values of SCG parameter n.
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A linear regression anal)_is of 61f and In d* in the range of 61t = 0.2 to 0.9 was made to

determine the slope and inter< opt of each individual curve for a given n, based on the following relation:

• I
°t = -7 In d* + I_ (185

11

where 1/n' and [3 are the slo I c and intercept, respectively. A comparison of the true _z (an input datum)
and the apparent n' (calculat,,'d) is shown in figure ,.,"_ where a linear relationship between n and 11' is

evident (except for lower n \ alues, particularly for n < 10). Hence, the overall relationship between n

and n' can be approximated as

pn =0.9775n + 1.7384 (19)

with a correlation coefficient r = 0.9995. Since the difference between n' and 11 was >8 percent for i1< 10

and <3 percent for n > 20, a further approximation of equation (19) can be made for n > 20 as follows:

I1 -'_ 11 (20)

The relationship between the _ntercept 13and n is shown in figure 3. The value of [_ decreases with

increasing n and becomes in dgnificant, approaching zero, when n > 20. The overall relationship

between [3 and i+ in the ran_'.c of n = 5 to 100 was

ff = 2.666(n5 -1"27'_ (215

with a correlation coefficient ,2 = 0.9973. For a nonnormalized expression, equation (13) is used to

reduce equation (18) to

_,I 1
- ,in_+ X

S i n
(225

where

l ln( ai ]+13
Z n' [_AS i J

(23)

SCG parameters n' and 7, in constant stress rate loading can be obtained from the slope and inter-

cept by a linear regression analysis of ((yflS i) versus In d. With n' thus calculated, n can be evaluated
from equation (19). The parameter A can be evaluated using equation (23) from calculated Z together

with [3 (eq. (21)) and known values ofa i and S i. The solution presented in this study (eq. (22)) is much

simpler compared with the previous solution by Trantina (ref. 12) in which a simple linear regression

would hardly be applicable because of the complex functional form of the solution, as shown below

(note that (_fis present in boti sides of the equation):

OSl >1
Si n

(245
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Therefore,whendeterminingSCGparameters,thecurrentsolution(eq.(22))significantlyeliminatesthe
complexityassociatedwitharegressionanalysisthatwouldbeencounteredin theprevioussolution(eq.
(24)).Forthecaseofn > 20, based on the results of figures 1 and 3 for _yf > 0.4, 13 is negligible (with a

maximum of about 7 percent) compared with cyi_. Hence, equation (21) reduces to

13---0 (25)

which results in X- [In (ai/ASi)]/n. Likewise, in this case, ii' ---n from equation (20).

A distinct difference in functional expression between the power-law and exponential formulations

is that in the power-law formulation, log of is plotted as a function of log 6, whereas in the exponential

formulation, of/S i is plotted as a function of In t_ (fig. 1 shows this for the normalized parameters, cyf as
a function of In _ ). Hence, the knowledge of inert strength in the exponential formulation is a prerequi-

site to determining SCG parameters t7' and Z, which is a disadvantage compared with the case (eq. (2))

of the power-law formulation. Note that the power-law formulation does not require any prior knowledge

of inert strength to determine SCG parameters n and D. Although not presented here, the numerical re-

sult was plotted as log of as a function of log 6 for different i1 values in the same way that is used for
the power-law formulation. The resulting plots, however, showed appreciable nonlinearity, which made

linear least-squares fitting inapplicable in determining the related SCG parameters.

Constant Stress Loading

The numerical results of normalized time to failure Tf as a function of normalized applied stress
_* are shown in figure 4 for values of n ranging from 5 to 100. The general trend of the solution can

be summarized in terms of (1) the convergence of in T; close to zero with c*_ 0, (2) the increased SCG

susceptibility with decreasing 11 values, and (3) the linearity between In Tf and c* in the range of
* = 0.2 consequence, the relationship between normalized time to failure and normalized_y to 0.9. As a

applied stress within the linear region can be written as

In Tf = -n'o* + _ (26)

The linearity between In Tf and c is manifest when the correlation coefficient r 2 > 0.995 for each

curve is considered. Hence, n' and [3 can be determined with a reasonable accuracy by a linear regres-

sion analysis based on the results in equation (26). The relationship between n' and n is shown in figure

5 and has the following relation:

n' = 0.9827n + 3.3440 (27)

with r 2 = 0.9997. The difference between n' and n was >8 percent for n < 30 and <5 percent for n > 40

so that a further approximation of equation (27) can be made for the case of n > 40 as

n' = n (28)

The function of [3 with respect to n is depicted in figure 6, where the intercept 13 decreases with

increasing n values, resulting in the best-fit relation

NASA/TM--2002-211153/PART1 8



_=

"O

.N

O
z

20 --

0

-20 -

-40 --

-60 --

-'80 --

-100 --

SCG

parameter,
n

_5
_10

..20

_100

-120 I I I I
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Normalized applied stress, or*

Figure 4.--Numeri,:al results of normalized time to failure Tf* as function of normalized

applied stress _' in constant stress loading for different values of SCG parameter n.

Best fit120 -- -- _,

-=: 1:1 relatio+l
" 100

i+0+S+/+._ 6(1

o_ 40 --

_. 20 J" n'=0.9827n+3.3440

< t- I 1 L I I I0
0 20 40 60 80 100 120

True SCG parameter, n

Figure 5.--Relationship betweet_ true SCG parameter
n and apparent SCG parameter n' in constant stress

loading.

2

O.
0

.o

_ -2

F
. Best fit, 13= -1.91 3 + 4.985 e -0.049n

..4/ I I I I I I
0 20 40 60 80 100 120

True SCG parameter, n

Figure 6.--Relationship between intercept 13 and true

SCG parameter n in constant stress loading.

NASA/TM--2002-211153/PARFl 9



[3= - 1.913 + 4.985e -0'049n

with r 2 = 0.9907.

For the nonnormalized expression, equation (13) is used to reduce equation (26) to

(29)

where

In t t = -17 Z (30)
Si

Hence, n' and )_ in constant stress loading can be obtained from the slope and intercept, respectively, by

a simple linear regression analysis of the data In !/.as a function of c/S i. With 17' calculated, n can be
evaluated from equation (27). The parameter A can be estimated from equation (31) with calculated X

together with [3 (eq. (29)) and known values of a i. The solution presented here is much simpler than the

rather complex one proposed by Trantina (ref. 12), in which the slope of the relation In !f versus o/S i was
n + (Si/c). Both analyses, however, would give a similar result when t+ is significantly greater than Si/o.

A notable difference in constant stress loading analysis between the power-law and exponential for-

mulations is that in the power-law formulation, log !f is plotted as a function of log o as seen in equation

(3). However, in the exponential formulation, in tfis plotted as a function of _/S i. Hence, as in the case
of constant stress rate loading, inert strength must be known to determine n' and Z, which is a distinctive

drawback of the exponential formulation as compared with the power-law formulation. Unlike the

power-law formulation (eq. (3)), there was significant nonlinearity in plots of log T; as a function of
log o* (not shown here), which made linear least-squares fitting inapplicable to determine the related

SCG parameters.

Cyclic Stress Loading

The results of the numerical solution of normalized time to failure T; as a function of normalized

maximum applied stress Oma x in cyclic sinusoidal loading with two stress ratios R of 0.1 and 0.5 are

shown in figure 7 for values of n ranging from 5 to 80. Similar to the case of constant stress loading,

this plot is linear with respect to Oma x in the range 0.2 to 0.9 and converges close to zero with a further

decrease in °max" The linearity between In Tf and Omax was evident considering the correlation coef-
ficient of r 2 ->0.997. Also, note that the effect of the R-ratio on the solution for a given 17 value is insig-

nificant. Based on the results in figure 7, similar to the case of constant stress loading, the relationship

between In T; and °max can be described as follows:

ln Tf " *=-n O max + [3 (32)

where n' is the slope and [3 is the intercept, which can be determined from the numerical results using a

linear regression analysis based on equation (32).

Figure 8 shows the relationship between n' and n for R-ratios of 0.1 and 0.5. For comparison, the

result determined in constant stress loading (i.e., R = 1.0) from figure 5 was also included. Note that the

SCG analysis in cyclic stress loading reduces to that of constant stress loading when R = 1.0 (also seen in

NASA/TM--2002-211153/PART1 10
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and 0.5 and diff¢_rent values of SCG parameter n.

eq. (17)); hence, constant sire _s loading can be regarded as one of the generalized cyclic loading configu-

rations. A good linear relatio_ between n' and n was found for both R = 0.1 and 0.5 with 1.2> 0.999:

17' = 0.9777n + 2.5296 for R = 0.1

17' = 0.977217 + 2.5411 for R = 0.5 (33)

As seen in figure 8, no signifi_:ant difference in the n'-n relation exists for R-ratios ranging from 0.1 to 1.0

(constant stress loading): thi,, relationship is also observed in the power-law formulation (refs. 5, 17, and

18). The difference between ,_' and n was >7 percent for n "__'-20 and <3 percent for n > 40, so that a fur-

ther approximation of equati( n (33) can be made for R = 0.1 and 0.5 for the case ofn > 40 as follows:

' (34)17 = /l

The relationship between the intercept [3 and n is depicted in figure 9, where the result from figure 6

for constant stress loading (R = 1.0) was also included for comparison. The intercepts for R = 0.1 and 0.5

decrease more monotonicall2_ with increasing n values than ihat of R = 1.0. The best-fit equation, similar

to equation (29) in constant s_ tess loading, was obtained for each R-ratio:

[3 = 0.1409 + 3.559e --00737_ for R = 0.1

13= 0.1182 + 3.782e --00857'7 for R = 0.5 (35)

with the correlation coefficiem of r 2 > 0.991.
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ing with R-ratios of 0.1,0.5, and 1.0.

For the nonnormalized expression, equation (13) can be used to reduce equation (32) to

in tf = --tl' (Ymax + )_ (36)
S i

where

Therefore, n' and Z of the exponential formulation in cyclic stress loading for a given R-ratio can be

obtained from the slope and intercept by a linear regression analysis of the data of In tfas a function of

(Ym,ax/Si" With n' calculated, n can be evaluated from equation (33). The SCG parameter A can be
estimated from equation (37) with calculated Z, 13 (eq. (35)), and known values of ai.

In cyclic stress loading, a distinct difference between the power-law and exponential formulations is

that in the power-law formulation, log tf is plotted as a function of log Omaxas seen in equation (4)

whereas in the exponential formulation, In _is plotted as a function of (Ymax/S i. Hence, as in the cases of
constant stress rate and constant stress loadmg, the inert strength of a material must be known in advance

for cyclic loading to determine the corresponding SCG parameters, a clear disadvantage of the exponen-

tial formulation compared with the power-law formulation. Although not presented here, it was found that

in plots of log Tf as a function of log Cma x, typical of the power-law formulation (eq. (4)), there was a
considerable nonlinearity that made linear least-squares fitting inapplicable in determining the related

SCG parameters.

Typical examples of the effect of frequency on the time to failure in cyclic stress loading are shown

in figure 10 for R-ratios of 0.1 and 0.5 with n = 20 and (Ymax = 0.9. The number of cycles to failure Nf is
calculated using the relation

Nf =_--_-_n
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where o)ai/A is the input valu" for numerical procedures, as shown in equation (17). As seen from
:¢

figure 10, Tf decreases rapid y around N)= 10 -1 to 100 and thereafter approaches a plateau that corre-

sponds to the exact solution oi time to failure. In other words, as long as the total number of cycles to

failure is >1, the solution of time to failure is converged and i'_ thus independent of either the number

of cycles or frequency. Hence in the numerical procedure, the value of olai/A was chosen to fulfill this

requirement and started with _t minimum value of 108, depending on Tf. This frequency independency

in the exponential formulatioJ, is the same as that in the power-law formulation (refs. 5 and 17). For the

power-law formulation, the tithe to failure remains unchanged with frequency, which is attributed to the

T

functional form of (1/'t)J'[f(, )]"dt in equation (7)(ref. 5). It can be easily shown that the period z of
0

any applied loading cycle is a ways cancelled out in the formulation. It should be noted that in this analy-

sis, the presence of another d_mage mechanism (refs. 19 to 21 ) in addition to slow crack growth was not

assumed to occur in cyclic lo;,ding. Only slow crack growth was considered as the unique mechanism

leading to the failure of a mat :rial.

Comparison of Constant Stress and Cyclic Stress Loading Lifetimes: the h-Ratio

The ratio of constant stre,_ _ and cyclic stress loading lifetimes, the h-ratio, with a condition of (y* in
w. *

constant stress loading equal Io (Ymax in cyclic stress loading (_* = (_max), has been frequently used in

the power-law formulation (rt fs. 5, 17, and 18) to quickly compare lifetimes of constant stress and cyclic

stress loading. As done custoJtmrily for the power-law formulation, the h-ratio was also calculated for the

exponential formulation. The h-ratio is defined as (refs. 5, 17, and 18)

h =_tf_ (39)

tf_

NASA/TM--2002-211153/PAR 1"1 13
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_ax = 0.7) loading. Each line represents best fit.

where again tfs and !/_. are times to failure in constant stress and cyclic stress loading, respectively.
Based on the numerical results of time to failure for constant stress and cyclic stress loading, the h-ratio

was calculated using equation (39), and the results are presented in figure 11 as a function of n for differ-

ent values of the R-ratio. The h-ratio decreases with increasing n, and the rate of decrease with increas-

ing n is almost the same regardless of R-ratio up to 0.9. Also, for a given n, the h-ratio increases with

increasing R-ratio. Note that the R-ratio of 1.0 represents the case for constant stress loading so that when

R = 1.0, the numerical solution in cyclic stress loading should reduce to the case of constant stress load-

ing. This presents another way to check the accuracy of the cyclic stress loading analysis. The h-ratio var-

ies slightly by a factor of 2 between (Ymax = 0.2 and 0.9: the lower Orma x value gives the higher h-ratio

and vice versa. Hence, for a conservative estimate, the higher value of c max = 0.7 was used for the calcu-
lation of the h-ratio. The maximum difference in life between cyclic stress and constant stress loading is

approximately 1 order of magnitude, which occurs for R = 0.1 and n > 80. A similar trend in the h-ratio

can also be observed in the power-law formulation, as shown in figure 12. Here the plots of the h-ratio

as a function of n are shown for a range of R = 0.0 to 1.0, calculated previously for the power-law

formulation (ref. 17). Unlike the exponential formulation, no effect of _max on the h-ratio for a given

R-ratio had been observed for the power-law formulation. Although no significant difference exists in

the plots of h-ratio versus n between the exponential (fig. 11) and power-law (fig. 12) formulations,
the overall magnitude of the h-ratio is about 20 percent greater in the exponential than in the power-law
formulation.

Other Exponential Formulations

A comparison of solutions from other exponential SCG formulations under three loading configura-
tions is shown in figure 13. The figure presents the results of three exponential formulations of equations

(9) to (11) for n = 20 and 40 and compares them with those of the primary formulation of equation (8).

The difference in solution between this primary equation and two other equations ((9) and (10)) was

insignificant, particularly at higher stress rates (in constant stress rate loading, fig. 13(a)) and higher

applied stresses (in constant stress and cyclic stress loading, figs. 13(b) and (c)), giving rise to a reason-
able linearity between the dependent/independent variables related. This insignificant difference in solu-

tion as well as the linearity allows one to conclude that the primary equation would be representative of

all three exponential SCG formulations considered. By contrast, the remaining second-order formulation

NASA/TM--2002-211153/PART1 14
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(eq. (11 )) showed an appreciable deviation and a notable nonlinearity. Therefore, the determination of

corresponding SCG parameters in this case differs from that of the primary equation and should only

be attempted under appropriate circumstances so that a simple lineal" regression could be applied with

reasonable accuracy. It is expected that considering its functional form, equation (12) also would yield

results similar to those of equation ( 11 ).

Although the use of the exponential formulations to determine the SCG parameters of a material

requires somewhat inconvenient numerical procedures, the resulting solutions given in this report would

have almost the same degree of simplicity in both data analysis and experiments as the power-law

formulation in constant stress rate, constant stress, or cyclic stress loading configurations. However,

the knowledge of inert strength of a material should be known beforehand so that the corresponding SCG

parameters (particularly n) can be determined, which could be a major drawback of the exponential for-

mulation. In parts 2 and 3 of this report series, a variety of experimental data from various glasses and

advanced ceramics at both ambient and elevated temperatures will be used to verify the solutions given
herein.

Conclusions

Based on the numerical solutions of life prediction parameters obtained with exponential formula-

tions, the following conclusions were made:

1. In constant stress rate (dynamic fatigue) loading, slow-crack-growth (SCG) parameters can be

determined by a linear regression analysis of the data of (fracture stress/inert strength) as a function of

applied stress rate, cf/S i versus In 8, together with the appropriate relations provided.
2. In constant stress (static fatigue or stress rupture) and cyclic stress (cyclic fatigue) loading, the

corresponding SCG parameters can be evaluated by a linear regression analysis of the data of time to fail-

ure as a function of (maximum applied stress/inert strength), In !f versus (Ymax/Si, in conjunction with the
pertinent relations provided.

3. No frequency effect on life and no dependency of SCG parameter n on the R-ratio, the ratio of

minimum to maximum applied stress, was observed in cyclic stress loading, much the same as that

observed for the power-law formulation. The difference in the ratio of constant stress to cyclic stress load-

ing lifetimes, the h-ratio, between the exponential and power-law formulations was minimal with a maxi-
mum difference of about 20 percent.

4. While the numerical solutions using the exponential formulation require somewhat inconvenient

numerical procedures, they provide almost the same level of simplicity in both data analysis and experi-

ments as the power-law formulation. However, requiring the knowledge of the inert strength of a material

to determine corresponding SCG parameters (particularly n) would make the exponential formulation

more difficult to use in comparison with the power-law formulation.
5. There is no appreciable difference in solutions between the primary exponential SCG equation

(used in this analysis) and two other exponential expressions analyzed in this study, so the primary equa-

tion would be considered representative of all the first-order exponential formulations.
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Appendix Symbols

slow-crack-growth p;_rameter defined in equations (1 J and (8)

crack size

"_" [Ay2(n - 2)1slow-crack-growth pz rameter. B = .KIC/

crack size in normali,:ed scheme of references 15 to 17

slow-crack-growth p, rameter defined in equations (5J to (7)

periodic function, cy_ lic loading

ratio of constant to c_ clic stress loading lifetimes

stress intensity factor

number of cycles

slow-crack-growth p_rameter defined in equations (I i and (8)

stress ratio

correlation coefficient

strength

time in normalized st heine of references 15 to 17

time

crack velocity

crack geometry facto_

intercept of curve in linear regression analysis defined in equations (18), (26), and (32)

slow-crack-growth p_rameter defined in equations (23). (31 ), and (37)

applied stress

applied stress rate

period

angular velocity
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Subscripts:

C critical

c cyclic stress

d constant stress rate

f fracture

I mode I

i inert or initial condition

max maximum

min minimum

s constant stress

Superscripts:

* normalized

' apparent (calculated)
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